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1 Overview
This essay is about the way three people respond to a formal result connecting binary
(i.e. all-or-nothing) beliefs and precise credences. This result was outlined by Fitelson
and Easwaran in a pair of papers (2015, 2016) as a response to the preface paradox, but
has broader implications. Each of our three main characters interprets the result from
a different philosophical perspective, and uses it for a different purpose. I will present a
similar result connecting beliefs and imprecise credences, and then evaluate how it affects
the views of each character. For at least some of their views, I will argue, the imprecise
result is a significant improvement.

Here is the essay plan. In Section 2, I introduce some notation and describe the
Preface paradox. I then present the formal result which was formulated in response to the
paradox by Easwaran and Fitelson (2015). This result establishes a connection between
binary and gradational doxastic models, and is centered around a representation of the
former by means of the latter. In Section 3, our three main characters are introduced.
I will outline how each of them interprets the representation, and for what purpose.
Section 4 is a brief summary of the imprecise probabilistic notions that are used in
Section 5 to develop a representation binary beliefs by means of imprecise probabilities,
extending Fitelson and Easwaran’s result. Section 6 discusses the impact of this new
representation on our main characters. Section 7 sums up the main conclusions.

2 The precise representation
This section introduces Fitelson and Easwaran’s (2015) representation of binary doxastic
models by means of precise ones. I follow their exposition in starting from the Preface
paradox, which gives one motivation for the representation. In the next section, we will
see that this is not the only one. Before we start, however, a bit of terminology is in
order.
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2.1 Set-up and notation

I use the term doxastic states to refer to the epistemic features of agents that we are
trying to model. I use the term full belief for a binary model of an agent’s doxastic state,
and credence for a gradational model. The particular imprecise model I will discuss is
that of lower previsions, and I will call such a model an imprecise credence.

I assume the agent’s beliefs to be defined over a set of propositions, denoted by F ,
which is closed under negation.1 Propositions are themselves interpreted as sets of situ-
ations, or “possible worlds”, which capture the subjective possibilities of the agent. The
agent is certain that exactly one situation in a finite set W will obtain; or equivalently,
that exactly one possible world is the actual one. A world w is an element of a propo-
sition A iff A is true when w is the case. I will also write A(w) to denote the following
function from W to {0, 1}:

A(w) =

{
1 if w ∈ A,
0 otherwise.

(1)

I use the term random variable to refer to functions, such as the one above, which map
worlds onto real numbers. Thus X(w) is the value of a random variable X at world w.

Full beliefs are functions b : F → {0, 1} such that:

b(A) =

{
1 if A is believed,
0 if A not believed.

(2)

Similarly, precise credences correspond to functions cr : F → [0, 1], with 1 representing
the highest degree of belief, and 0 the lowest.

2.2 A paradox of full belief

A researcher has just written a long book on some difficult subject. Clearly, she believes
each claim in her book to be true (or she would have removed it from the book). At
the same time, she is aware that all other books of this length treating such a complex
subject have some false claims in them, and she sees no reason why hers should be any
different. Thus, she warns the reader that there is at least one false claim ahead by
adding a claim to this effect in the book’s preface.

This set up is known as the Preface paradox. The paradox arises because the re-
searcher believes each claim in the book to be true, including the preface claim that
at least one claim is false. Therefore, her beliefs are inconsistent. Easwaran and Fi-
telson (2015) describe this paradox as an example of conflict between two prima facie
reasonable epistemic norms:

1In other words, I assume that every agent who has a doxastic attitude towards A also has a doxastic
attitude towards its negation ¬A.
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• Deductive Consistency (DC)
Agents should have beliefs that are (classically) deductively consistent, meaning
that the propositions they believe must form a deductively consistent set of propo-
sitions.

• Evidential Norm (EN)
Agents should have beliefs that are supported by the total evidence available to
them.

In this case, the researcher’s evidence (all previous books of this kind had some mistakes)
supports her belief that at least one claim in her book is false. Yet, together with her
initial belief that each claim is true, this leads her to a violation of deductive consistency.

Switching to gradational models of doxastic states is a known solution to the paradox.
In these models, (DC) is substituted by the following norm, first introduced by Ramsey
(1931) and de Finetti (1974):

• Credal Coherence (CC) Agents should have credences that respect the following
conditions:

cr(A) ≥ 0 for all A ∈ F (3)
cr(W) = 1 (4)
if A ∩B = ∅, then cr(A) + cr(B) = cr(A ∨B) (5)

Since these are just (a formulation of) the axioms of probability, (CC) is the re-
quirement that the agent’s credences be probability functions.

Credal Coherence does not conflict with the Evidential Norm, so gradational represen-
tations of this kind are immune from the Preface. We can model Dr. Truthlove’s high
confidence in each of her book’s initial claims by a credence p that assigns to each claim
Ai, i = 1, ..., n a high degree of belief. Then, so long as the book has enough claims, it
will be possible for her to have a high credence that there is a false claim in the book
while remaining coherent. For example, if p(Ai) = 0.99 for all i and n > 100, she can
coherently have p(F ) = 0.99 where F is the proposition that at least one of the Ai is
false.

For this reason, the Preface is often appealed to as a reason to adopt gradational
models and norms of rationality over their binary counterparts (Christensen 2004). How
can the defender of full belief respond to this challenge? In the remainder of this section,
I look at Fitelson and Easwaran’s response, which builds up to a representation of full
beliefs by means of probabilities.

2.3 A coherence norm for full beliefs

Fitelson and Easwaran (2015) suggest that supporters of full belief should abandon (DC)
in favour of a weaker norm, something like (CC). To derive this norm, they start from a
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set of assumptions that are commonly used to justify (CC) for gradational models, and
go under the label of epistemic utility theory. First, they assume that a doxastic state’s
accuracy the the main source of epistemic utility, and second, that rational agents seek
to maximise their epistemic utility.

They propose to measure the accuracy of full beliefs with a function:

S(b, w) =
∑
A∈F

s(b(A), A(w)) (6)

where s : {0, 1} × {0, 1} → R is defined as:

s(b(A), A(w)) =


R if b(A) = 1 and A(w) = 1,

−W if b(A) = 1 and A(w) = 0,

0 if b(A) = 0.

(7)

for some positive constants R,W ∈ R. This definition simply says that the agent obtains
a positive amount of accuracy R (i.e. she gains epistemic utility) whenever she believes
a proposition that ends up being true. The agent loses an amount W of accuracy (i.e.
she loses epistemic utility) whenever she believes a proposition that ends up being false.
Finally, the agent neither gains nor loses accuracy by failing to believe a proposition.
The only assumption Easwaran (2016) makes on the values R and W is that R < W , so
as to avoid giving an agent who believes both A and ¬A positive utility.2 The meaning
of these values for the representation will become clear later in this section.

Once a measure of accuracy has been defined, they capture the assumption that
rational agents seek to maximise their accuracy by imposing the following rationality
requirement:

• Weak Accuracy-Dominance Avoidance (WADA)
For a belief b : F → {0, 1} to be rational, it is necessary that it is not weakly
accuracy-dominated by some other belief b′ : F → {0, 1}. This means that there
must not exist another belief b′ : F → {0, 1} such that:

S(b, w) ≤ S(b′, w) for all w ∈ W , (8)

with strict inequality for at least one w ∈ W .

In other words, b is not rational if there is some other b′ that is at least as accurate as
b, and more accurate than b in some possible world. An alternative norm requires the
inequality to be strict on every w ∈ W , i.e. b is not rational if there is some b′ strictly
more accurate than it in every world. This is known as Strong Accuracy-Dominance

2This is mostly a matter of convention, see (Easwaran 2016, Appendix B.4).
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Avoidance (SADA). I will focus on (WADA) in this essay for reasons of space, but
Easwaran and Fitelson’s (2016) representation can be built around either principle.3

Easwaran (2016) takes the above requirement as a definition of coherence for full
beliefs. More precisely, he defines:

Definition 2.1 (Strong coherence). A full belief b : F → {0, 1} is strongly coherent iff
it avoids weak accuracy-domination (WADA).

Then he puts forward the following norm:

• Strong Belief Coherence (SBC) Agents should, at any time t, have full beliefs
that are strongly coherent.

2.4 The precise representation

After defining an analogue of (CC) for full belief, it remains to be shown that adopting
this norm instead of (DC) saves one from the Preface paradox. To this purpose, Easwaran
(2016) introduces his representation of full-belief by means of (precise) credences. The
representation consists of the following definition:4

Definition 2.2 (Precise representation). Let b : F → {0, 1} be a full belief. We say that
b is represented by a probability function (i.e. a coherent, precise credence) p : F → R
iff b maximises the expected score under p.

It is useful to define the expectation of p as a function

Expp(X) =
∑
w∈W

p({w})X(w) (9)

where X :W → R is a random variable. Note that, if we think of the event A ∈ F as a
random variable, then Expp(A) = p(A). So Expp is really an extension of p to the set of
all random variables X : W → R. With this notation, we can say that b is represented
by p iff b maximises

Expp(S(b, ·)) (10)

where the value of S(b, ·) at each world w ∈ W is the score of b at that world.
From this definition can be derived two main results:

Theorem 1. Let b : F → {0, 1} be a full belief. If b is represented by a probability p,
then b is weakly coherent.

3Note that it’s easier to respect (SADA) than (WADA), i.e. (SADA) is the weaker norm.
4Actually Easwaran (2016, p.828) writes that b is represented by p when b maximises the expected

score under p, and the values of b are related to those of p as in Theorem 3. I separate these two
characterisations for clarity, and the content of Theorem 3 is that they are equivalent.
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Theorem 2. Let b : F → {0, 1} be a full belief. If b is represented by a probability p
such that p({w}) > 0 for all w ∈ W , then b is strongly coherent.

These two theorems show that there are some coherent full beliefs available to the
researcher in the preface scenario. To find them we can simply pick a coherent credence,
such as the one in our previous example, with p(Ai) = 0.99 for each claim Ai, i = 1, ...n >
100; and p(F ) = 0.99 for the claim that at least one Ai is false. Then the researcher need
only pick a belief b represented by this probability, and she will be certain that this belief
is coherent.5 Still, this solution leaves one question open. Recall that the preface paradox
arose as a conflict between Deductive Consistency (DC) and the Evidential Norm (EN).
Are we sure that demanding beliefs to be coherent doesn’t conflict with demanding that
they reflect the agent’s total evidence?

Fitelson and Easwaran (2015) answer by arguing that (EN) implies coherence. The
upshot is that for any given situation, the set of full beliefs that reflect an agent’s evidence
will always be a subset of the set of all coherent beliefs: thus demanding that the agent
be coherent will never prevent her from respecting the evidential norm. To show this,
they start from the assumption that degrees of evidential support can be encoded in
a probability function. Then they put forward the following necessary condition for
satisfying the evidential norm (EN):

• Necessary condition for satisfying the Evidential Norm
Let b : F → {0, 1} be a full belief. Then b satisfies (EN) only if there exists some
probability function p such that, for a reasonable threshold r ∈ [0, 1] and for all
A ∈ F we have:

B If b(A) = 1, then p(A) ≥ r,

B If b(A) = 0, then p(A) ≤ r.

The idea is that, under the assumption that the agent’s evidence is encoded in a prob-
ability p, the agent’s beliefs must align with that probability in order to respect (EN).
The following result connects this evidential condition with the representation of belief
by means of precise credences:

Theorem 3 (Easwaran 2016). Let p : F → R be a probability function, and let b : F →
{0, 1} be a full belief. Then b maximises expected score under p iff for all A ∈ F

• If p(A) > W
R+W

then b(A) = 1,

• If p(A) < W
R+W

then b(A) = 0,

• If p(A) = W
R+W

then b(A) can be either 0 or 1.
5Since the set of full beliefs over F is finite, at least one of them will always maximise expected score

under p.
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Putting together this theorem with the previous two, we now see that if we manage
to encode the evidence in a probability p, and interpret the two score values W,R as
defining a reasonable threshold for satisfying (EN) with regards to this probability, then
the set of full beliefs b represented by p (that is, the full beliefs which maximise expected
score under p) will contain all full beliefs that respect (EN).

3 Three perspectives
Enter our three main characters. Each of them reads the representation presented in
the previous section from a different philosophical perspective, and uses it to advance
a different philosophical project. Since I want to put forward a new representation, it
will be useful to discuss these perspectives in more detail, so that I can assess my result
based on how it affects each character’s views.

(i) Dr. Truthlove.6 Dr. Truthlove is a supporter of full belief. As her name suggests,
she is especially concerned with having true beliefs, and so is happy to accept Belief
Coherence as a rationality requirement, given its accuracy-based justification. The rep-
resentation allows Dr. Truthlove to respond to the preface paradox in the same way
probabilists do, while still maintaining that full beliefs are the real thing: probabilities
are simply used as witnesses for the coherence of the full beliefs they represent.7

There are two main advantages Dr. Truthlove derives from using probabilities as
representations. First, they give her a way to find coherent full beliefs: pick a probability
on F , and then maximise expected utility. Secondly, and more importantly, even if Dr.
Truthlove does not herself recognize credences as valid epistemic models, other people do.
These people have developed methods to address many of the epistemological problems
that she faces. So Dr. Truthlove can hope to use the representation to adapt these
methods and solutions to her binary framework.

(ii) Dr. Locke.8 Dr. Locke is Dr. Truthlove’s arch-rival. Although he shares Dr.
Truthlove’s desire for accuracy, he is a supporter of gradational rather than binary dox-
astic models. Indeed, he supports the Lockean thesis: this is the claim that an agent has
a full belief attitude towards a proposition iff they have a credence in that proposition
which is higher than a certain (possibly context-dependent) threshold. In other words,
Dr. Locke thinks that to believe A just is to have a high credence in A. The precise
representation (and particularly, Theorem 3) allows him to interpret all belief-talk (by
traditional epistemologists, for example, but also by most users of natural language) as

6This is the perspective from which the result is presented in Easwaran (2016).
7Easwaran writes that “[t]he probability function is just a tool for showing that certain doxastic states

are coherent. I used a probability function because it allowed me to adopt the tools of expected value
and decision theory, but if some other sort of function had the same sort of connection to coherence, it
would be acceptable as well” (2016, pp.830-831).

8This reading of the result is presented in a recent paper by Kevin Dorst (2019).
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shorthand for talk about credences and thresholds.9
(iii) Ms. Truthlove.10 Like her sister, Ms. Truthlove supports binary beliefs and

values truth. However, being a judge, she is particularly interested in believing only
what is supported by the evidence. Under the assumption that evidence is modeled by
probabilities, Ms. Truthlove can use the representation to reach the important conclusion
that belief coherence does not conflict with the evidential norm.

Ms. Truthlove only cares about probabilities insofar as they model evidence. If
we found some other framework to model evidence, and from it construct the same
representation, she would be just as happy to use that to derive her desired conclusion,
which is a claim about the relationship between two norms for full belief.

The remainder of the essay is devoted to spelling out an imprecise representation of
full beliefs which, I argue, improves on the precise one for both Dr. Truthlove and Ms.
Truthlove. Dr. Locke is a lost cause: since he assumes precise credences are the real
thing, any representation involving imprecise credences will add little to his view. All I
can say is that it might be possible to build a reworked version of Dr. Locke’s view for my
representation. Whatever the appeal of the Lockean thesis may be for the supporter of
precise beliefs, we can expect a defender of imprecise beliefs to find an imprecise version
of the thesis similarly appealing.

4 Imprecise credence and coherence
It’s time to introduce imprecise credences, the model by which I want to represent full
beliefs. There is a whole family of imprecise frameworks for modeling doxastic states
(Walley 2000). Here I will focus on lower previsions, so I will use the terms “imprecise
credences” and “lower previsions” interchangeably. A good way to think of imprecise
credences is by comparison to precise ones. If a precise credence answers the question:
“How confident are you that A is true?” with a precise number p(A) ∈ [0, 1], an imprecise
credence answers the same question with lower and upper bounds P (A), P (A) ∈ [0, 1]
on your confidence.

For technical reasons, it is easier to discuss imprecise credences as functions defined
not just on the events F , but on a linear space K(W) of random variables X :W → R,
with F ⊆ K(W). Our assumption that P is defined on a linear space allows us to define
the upper bounds of your credence on each X ∈ K(W) as the lower bounds of your
credence on −X.11 More formally, given a lower prevision P : K(X )→ R, we define its

9I will look at how the precise representation can be used to argue for the Lockean thesis in more
detail in Section 6.

10This view articulates the central conclusion of Fitelson and Easwaran’s (2015)
11This is again something that has been justified only by appeal to pragmatic considerations, but

we will adopt this convention anyway, as it simplifies the exposition by allowing us to work with lower
bounds only.

8



D
raft

conjugate upper prevision by:

P (X) = −P (−X) (11)

Note that the expectation Expp of a probability function p : F → R is also a function
defined on K(W), and indeed it can be seen as a lower prevision with P (X) = P (X)
on every X. We refer to the lower previsions obtained by taking the expectation of
some probability function as linear previsions. It is sometimes helpful to think of the
lower prevision P as a “credal committee”, that is to identify P with the following set of
dominating linear previsions :

M(P ) = {p : K(W)→ R | p is a linear prevision, and p(X) ≥ P (X) for all X ∈ K(W)}
(12)

where each element of the set is the precise credence (and expectation) of a “member” of
the committee. Intuitively, the opinions of the imprecise agent result from amalgamation
of the opinions of the committee’s members (Joyce 2010).12

We have seen in the previous section that coherence for precise credences corresponds
to being a probability, and that this requirement can be justified by appealing to epis-
temic utility. An analogous requirement of coherence can be specified for lower/upper
previsions, although this norm has not yet been justified by means of epistemic util-
ity considerations. The justifications we do have are pragmatic, involving the betting
behaviour associated with lower previsions. While this does not invalidate the results
presented in following sections, we will see that they would be improved if we had access
to an accuracy-based justification of imprecise coherence. Coherent lower previsions are
defined as follows (Walley 1991 p. 75):

Definition 4.1 (Coherent lower prevision (on a linear space)). Let P be a lower prevision
defined on a linear space of random variables K(W). Then P is coherent iff

P (X) ≥ inf X for all X ∈ K(W), (13)
P (λX) = λP (X) for all X ∈ K(W), (14)
P (X + Y ) ≥ P (X) + P (Y ) for all X, Y ∈ K(W). (15)

5 An imprecise representation
This section contains my proposal for an alternative representation of belief by means of
imprecise credences. The representation will be defined in decision-theoretic terms: the
reason behind this choice is discussed in the first part of the section. After presenting
my results, I will argue that this imprecise representation is helpful for at least some of
the characters introduced in Section 2.

12This analogy is formalised by Theorem 4 in Appendix A.1.
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5.1 The decision-theoretic approach

Fitelson and Easwaran (2015) mention that their representation result can be given a
decision-theoretic reading. To do so we must think of the different full beliefs available
to an agent as different gambles the agent may accept, each resulting in utility S(b, w)
at world w. More formally, we define the gamble:

Xb = gamble that results in utility S(b, w) when w is the case. (16)

And denote by XF the set of all such gambles, each corresponding to a full belief over
F . We will write Xb(w) to denote the value of gamble Xb at world w ∈ W .13

Consider an agent whose credence is a probability p. If she were forced to accept
one gamble from those in XF , which one would she pick? The answer given by decision
theorists is that rational agents obey the following decision rule:

• Maximise expected utility (MEU)
An agent with precise credence p, when forced to accept a gamble among those in
XF , must choose the Xb that maximises her expected utility Expp.

So the agent will choose the gamble(s) Xb ∈ XF such that:

Expp(Xb) ≥ Expp(X
′
b) for all b′. (17)

But by the definition of Xb, we have that the above condition holds iff b maximises
expected score according to p. Together with the results of Section 2 this leaves us with
the equivalences summarised by the diagram in Figure 1.

This decision-theoretic approach is interesting for us because, in the imprecise setting,
a definition of representation in terms of expected utility maximisation (such as Definition
2.2) is not available. Intuitively, this is because expected utility is not uniquely defined
for imprecise credences: for any gambles X, Y , the lower/upper previsions P , P define
lower and upper bounds on the expected utility of X and Y . But unless P (X) ≥ P (Y )
(or vice versa), it’s not obvious which of the two has higher expected utility.14

On the other hand, agents with imprecise credences still need to make decisions. An
extensive literature exists debating the merits and demerits of various imprecise decision
rules. For this reason, I give a definition schema for my imprecise representation in
terms of the choices an imprecise agent would make. Depending on which rule we take
to be regulating the agent’s choices, the schema will produce a different definition of
representation.

13It is no coincidence that our notation for gambles is the same as that of random variables: every
random variable X can be thought of as a gamble that pays X(w) when w is the case.

14Contrast this with a linear prevision, where P (X) = P (X) and P (Y ) = P (Y ).
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 p represents b
b maximises 
expected 
score under p

If and only if

(Def. 4.1.3)

p(A) >  r implies b(A) = 1,
p(A) <  r  implies b(A) = 0,
p(A) = r   implies  b(A) = 0 or 1.

where r = W/(R+W)  

If and only if

(Th. 1)

A rational agent 
with credence p 
choses Xb

(MEU)
If and 
only if

Figure 1: Equivalences derived from the precise representation of full beliefs.

Definition 5.1 (Imprecise representation). A full belief b : F → {0, 1} is represented
by a coherent imprecise credence P according to a given decision rule iff the gamble Xb

is optimum in XF for P according to that rule.15

Where we say Xb is optimum in XF for P according to a given decision rule iff the
rule allows a rational agent with imprecise credence P to choose option Xb among the
XF .

As mentioned earlier, if we restrict ourselves to precise credences, the consensus is
that rational agents decide using (MEU). The definition above is in this case equivalent
to the precise representation of Section 2. But as we move to imprecise credences, a
number of reasonable decision rules are available.16 Each of them, when plugged in the
definition above, will produce a different representation. In this essay I will focus on the
following rule:

• Maximality
Consider an agent with imprecise credence P defined on a linear space K(W) ⊇
(F ∪ X ∗), where:

X ∗ = XF ∪ {(Xb −Xb′) : Xb, Xb′ ∈ XF}.

When forced to accept a gamble among those in XF , this agent must pick an option
Xb ∈ XF such that the following two conditions hold:

(i) There is no Xb′ ∈ XF such that X ′b(w) ≥ Xb(w) for all w ∈ W , and Xb′(w) >
Xb(w) for some w ∈ W .

15The domain of P is assumed to be the one specified in the decision rule’s definition.
16For a good summary of IP decision rules and their properties, see (Troffaes 2007).
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(ii) P (Xb −Xb′) ≥ 0 for all Xb′ ∈ XF .

Here is the rule’s intuitive meaning. Condition (i) simply requires optima to not be
dominated, whereas condition (ii) is best understood by considering what happens when
it fails. In this case we have P (Xb−Xb′) < 0, or equivalently, P (Xb′ −Xb) > 0, meaning
that the agent prefers giving away Xb in exchange for Xb′ to the status quo, as the lower
prevision for this exchange is greater than zero. Equivalently, thinking of the imprecise
credence as a “credal committee”, each member (i.e. each dominating linear prevision)
agrees thatXb′ is better thanXb. So choosingXb whenXb′ is available is clearly irrational
in this scenario.

Compared to the other alternatives in the literature, Maximality gives the simplest
and most useful representation. In particular, from the first condition of Maximality, it’s
easy to show the following analogue of Theorem 2 holds:

Proposition 1. Let b : F → {0, 1} a full belief. If b is represented by some coherent
imprecise credence P using the Maximality definition, then b is a strongly coherent belief.

Proof. (Appendix A.3)

Interestingly, the converse also holds:

Proposition 2. Let b : F → {0, 1} a full belief. If b is strongly coherent, then b is
represented by some coherent imprecise credence P using the Maximality definition.

Proof. (Appendix A.3)

The two results above are the reason why I will focus on the Maximality representation
for the rest of the essay (see Appendix A.2 for a comparison with other IP decision rules).
So from now on, by “imprecise representation”, I refer to the representation obtained from
Maximality.

One last thing must be mentioned before we can evaluate this imprecise representation
from the perspective of our three characters. It has to do with the domain of the
representing credences. In the Maximality definition, I require that P be defined not
only on the set of events F , but also on a larger domain of gambles. This ensures that
the conditions imposed by the rule make sense, i.e. that they don’t apply P outside
of its domain. Such care was not needed in the precise case, since if we start from a
probability overW , its expectation will be uniquely defined over all gambles in K(W). In
other words, there is a unique way to extend a precise probability from events to gambles
on the same possibility space. On the other hand, lower previsions defined on F can be
extended to K(W) in multiple ways. The most popular is called natural extension:

Definition 5.2 (Natural extension(Walley 1991, p. 122)). Let P be a lower prevision
defined on some set G of gambles over a possibility space W . Let L(W) be the set of all
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gambles overW . Then the natural extension of P to L(W) is the function E : L(W)→ R
defined by:

E(X) = sup{α : X − α ≥
n∑

j=1

λj(P (Xj)−Xj) for some n ≥ 0, Xj ∈ G, λj ≥ 0, α ∈ R}

(18)

Taking the natural extension of a coherent lower prevision P is the minimal way of
extending it while maintaining coherence: if E is the natural extension of P , and E ′

is a different, coherent extension, we always have E ≤ E ′ on L(W). In other words,
coherence requires an agent with lower prevision P on G to have a lower prevision of at
least E on L(W).17

If we argued that natural extensions are to be preferred over all other coherent ex-
tensions, then we could simply write a new definition of imprecise representation, saying
that a coherent credence P represents a belief b whenever its natural extension E (whose
domain is certainly large enough) represents b in the sense of the previous definition. I
have not done so because I don’t think such an argument can be given. That is, I don’t
think natural extensions are in general preferable to other coherent extensions, although
an argument can be given for preferring them in some contexts.

So where does this leave us? How troubling is it that our representing imprecise
credences must be defined on a larger domain than the beliefs they represent? The
answer will be different depending on the character who is evaluating the representation.
From some of their perspectives, the domain issue is irrelevant. From other perspectives
the domain issue is relevant; but in these cases, I will argue, some justification can be
given for preferring natural extensions.

6 Three perspectives revisited
It’s time to compare the imprecise representation presented in the previous section with
the one given by Easwaran and Fitelson. Since the precise representation was assessed
from three perspectives, corresponding to our three main characters, the comparison will
also be threefold.

6.1 Dr. Truthlove

Let’s start with Dr. Truthlove. Recall that she is a defender of binary belief models, and
that she is interested in the precise representation for two reasons: first, because it allows

17If we interpret the lower prevision of a gamble as an agent’s supremum buying price for that gamble,
then E(X) is the price at which the agent must be willing to buy X; the agent could also be willing to
buy X for a higher price, but we cannot infer this from P alone. The same holds, mutatis mutandis, if
we interpret lower previsions as lower bounds to confidence.
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her to respond to the Preface paradox without seeing credences as anything beyond a
mathematical tool; and secondly, because this tool has a rich epistemological tradition
built around it, whose methods she may hope to adapt to the binary framework.

Our imprecise representation can be thought of in a similar way. Dr. Truthlove
can use imprecise credences to save her from the Preface in the same way as precise
ones (indeed, every probability is also a lower prevision). In fact, from her perspective,
the imprecise representation improves on the precise one. This is because, although all
full beliefs that have a precise representation are coherent, it’s not the case that being
coherent implies having a precise representation. Easwaran (2016, Appendix F) shows
this with an example: for some set of propositions, and some values of W and R, there
are coherent full beliefs which are not represented by any precise probability. This is
bad news for Dr. Truthlove. If she relies on the representation to test for coherence, she
is ruling out some perfectly good full beliefs, just because they are not represented by a
probability. But if reference to probabilities is a mere tool to represent coherent beliefs,
and some coherent beliefs cannot be represented in this way, then the tool should be
improved. And one way to improve it is to represent beliefs as lower previsions.18

Note also that Dr. Truthlove can happily ignore the domain problem mentioned at
the end of the last section. So what if an agent doesn’t actually have an opinion about
gambles of the form (Xb − Xb′)? Lower previsions are not reflective of any attitude on
the agent’s part: they are just witness of the coherence of her beliefs. Furthermore,
since precise credences are special cases of imprecise ones, all the methods that were
made available to the defender of binary models by the precise representation are still
available to her under the imprecise one, together with the methods and techniques that
are unique to imprecise probability models, and to Maximality as a decision rule. In this
sense the imprecise representation extends, rather than substitutes, the precise one.

6.2 Dr. Locke

Dr. Locke’s perspective is more problematic. This isn’t surprising, since he supports pre-
cise gradational models. My imprecise representation does not involve precise credences,
and so it has no significance for Dr. Locke. But we should say something more. It is
an interesting question whether anything like the Lockean thesis can be maintained by
supporter of imprecise models. Before we can answer it, it is a good idea to review how
Dr. Locke might argue for this thesis, for example by following Dorst’s (2019) argument:

1. Dorst models an agent’s doxastic states by a pair (cr, b) made of a precise credence
cr and a full belief b. He assumes that accuracy is the fundamental epistemic virtue,

18Easwaran (2016, Appendix G) conjectures an alternative solution, based on a weakening the notion
of coherence. The idea is to give different weights to the scores of different propositions: then b is
coherent∗ iff it avoids accuracy-domination under all weight assignments. A recent paper by Rothschild
(2021) shows that this strategy works if we focus on avoiding strong accuracy domination.
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measuring it on credences by a proper scoring rule, and on beliefs by a score of the
kind we introduced in Section 2, with parameters W,R.

2. Since incoherent credences are accuracy-dominated, he restricts himself to the pairs
(cr, b) where cr is a probability.

3. He then argues that, in order to promote accuracy by her own lights, an agent
must have full beliefs b which maximise accuracy according to her credence cr.

4. Using Theorem 3, he deduces that the only pairs (cr, b) that are rational are those
where cr represents b. This justifies the Lockean Thesis as a requirement for
rationality:19

• Lockean Thesis
Assume an agent’s doxastic state is represented by (cr, b) with cr coherent.
Then for all A ∈ F , if b(A) = 1 it must be c(A) ≥ W

W+R
, and if b(A) = 0 it

must be c(A) ≤ W
W+R

.

At this stage, the “must” in the Lockean thesis is interpreted normatively: if the
agent’s doxastic state violates the Lockean condition, it is irrational.

5. Dorst then introduces the following Pragmatist premise: it makes sense to posit a
kind of doxastic state only insofar as this helps us with “the explanation, prediction,
and rationalization of the dynamics of rational agents” (Dorst 2019, p.197).

6. Since he thinks the precise representation allows us to “explain, predict, and ratio-
nalize” with credences every doxastic state that could be modeled by full beliefs,
Dorst concludes that we are justified in dropping full beliefs altogether, and reads
the Lockean Thesis as a metaphysical reduction. At least for rational agents, what
we call “belief” in a proposition just is credence above a certain threshold.20

It is not difficult to run an imprecise version of this argument. We start from pairs
(P , b), where P is an imprecise credence. As in the imprecise case, we restrict ourselves
to coherent credences, but now must do so on pragmatic grounds. Then the rest of the
argument goes through: unless b is represented by P , it is not optimal according to her
imprecise credence and the Maximality decision rule. So rational agents interested in
epistemic utility, and who decide using the Maximality rule, ought to avoid incoherent
beliefs.

19A number of different formulations of the Lockean Thesis, and a more in-depth discussion of its
relationship to the precise representation can be found in Rothschild (2021).

20Dorst (2019) goes on to generalise the result, for example allowing different thresholds to be used
for different propositions. Here I focus on the simplest case of a single threshold.
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The domain problem should also not be a significant obstacle for Dr. Locke. He
assumes that the lower prevision is capturing genuine features of the agent’s doxastic
state: if an agent is rational and makes her decisions via Maximality, she must have
some way (or perhaps multiple ways) of coherently extending P to compare gambles.
This fact follows from Dr. Locke’s assumptions, and is sufficient to run the argument
—there is no need to specify the method by which this extension is actually carried out.

Even though we can replicate Dr. Locke’s argument in the imprecise case, it’s not
clear that its conclusion can be formulated as a Lockean thesis. The metaphysical reduc-
tion/normative correspondence drawn by the argument is a reduction/correspondence
of global (binary) models into global (gradational, possibly imprecise) models. But the
Lockean thesis is formulated as a local statement, that is, a statement about individual
beliefs and credences. In the precise case, it is the claim that believing a proposition
A just is having a credence in A that is above a certain threshold. And in this form
the thesis just does not hold in the imprecise case. The closest we can get to it is the
following result:
Proposition 3. If a coherent lower prevision P : F ∪ X ∗ → R represents a full-belief
b : F → {0, 1} in the sense of Definition 5.1, then:

• If P (A) > W
R+W

then b(A) = 1.

• If P (A) < W
R+W

then b(A) = 0.

• If P (A) ≤ W
R+W

≤ P (A) then b(A) can be either 0 or 1.

Proof. (Appendix A.4)

Does this count as a variant of the Lockean thesis? The main difference from the
precise case is that Proposition 3 lacks a converse. Even if b respects the three conditions
with regards to some coherent P , it may still be incoherent, and therefore not represented
by any coherent lower prevision.21 So knowing that an agent’s beliefs are locally aligned
with a coherent imprecise credence is not enough to guarantee that they are represented
by that credence. Representability is a global property, which requires the coherence of
the agent’s beliefs as a whole.

Whether these differences are important enough to thwart the Lockean project I
cannot judge. I should point out, however, that all beliefs b in pairs (cr, b) that respect
the precise Lockean Thesis end up being coherent. So perhaps, if our main interest is the
reduction of one model to the other, it would not be unreasonable to restrict the thesis ’s
domain to pairs (cr, b) where b is coherent, especially since we already restrict it (point
2 of Dorst’s argument) to pairs where cr is coherent. The main difference is that, while
in the precise case both restrictions can be justified on accuracy grounds, we can only
justify coherence of lower previsions from pragmatic considerations.

21For example, every b respects the conditions when P is the vacuous prevision, with P (A) = 0,
P (A) = 1 on every A. This lower prevision is coherent (Appendix A.1).
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6.3 Ms. Truthlove

Like her sister, Ms. Truthlove supports binary beliefs, yet her view is centered around the
assumption that the evidential norm for beliefs can be expressed in terms of representing
probabilities. More precisely, she assumes that the total evidence of the agent can be
captured by a probability p over F . Under this assumption, Ms. Truthlove can use the
precise representation to prove that belief coherence does not conflict with (EN).

A problem for Ms. Truthlove’s view is that, although respecting (EN) never forces
one to be incoherent, there are coherent beliefs which do not correspond to any body of
evidence. These are of course the coherent beliefs which lack a probabilistic represen-
tation. The fact that such beliefs exist is not as bad for Ms. Truthlove as it was for
her sister, given that she is not interested in the representation as a way to establish
coherence. Yet it is odd that some coherent beliefs would be a priori irrational, under
any body of evidence. If we have no evidence at all, it seems reasonable to expect (EN)
to impose no constraints whatsoever on beliefs.

There are two alternative diagnoses for this problem: either belief coherence is too
weak, or probabilities over F are not sufficient to represent all possible evidential states.
But belief coherence is justified on accuracy grounds, and Ms. Truthlove loves to be
accurate. So she should modify her evidential assumption.

Let’s look at a simple example.22 In a game show, a glass urn hidden behind a
curtain is filled with red and black balls. The contestant has no information about the
number of balls in the urn, nor about the proportion of balls of each color. The game
host randomly draws four balls from the urn, with replacement. They are all black. How
does this evidence constrain the agent’s belief that the next ball the host draws will be
red?

Say we describe the initial lack of evidence by the uniform prior over black and red,
p(B) = P (R) = 1/2, and then update p by conditionalization on every draw. Doing so
brings the probability to p(R) = 1/6, p(B) = 5/6 after the four draws. Considering how
little information the contestant has, this is suspiciously strong evidence: it commits
her to believe the next ball is red with the exact same confidence than she has in a
fair die rolling a 6, but with strictly greater confidence than she has in two fair dice
rolls summing up to 6. It might not be irrational for the agent to reason in this way
—but does her evidence really require all these comparative judgements? Consider also
what happens if, after the four draws, the curtain is lifted, and the contestant sees
that the urn contains exactly 1 red and 5 black balls. Then her evidential probability
remains p(R) = 1/6, p(B) = 5/6, and so the evidential constraints on her belief remain
unchanged, even though she has learned a great deal about the situation. Indeed, now
we would be happy to say the evidence requires her to make the kind of comparative

22This example is inspired by Joyce (2010). A range of examples of this kind are commonly used to
question the adequacy of precise probabilities as models of belief. But they can be used just as well to
question their adequacy as models of total evidence.
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judgements outlined above.
Imprecise probabilities can capture different evidential constraints before and after

the curtain is lifted. When the curtain is down, the evidence is modeled by a lower
prevision with high degree of imprecision, i.e P (R)−P (R) is large. This will not require
the agent to make any comparison between her confidence in R and rolling a 6 with a fair
die. After the curtain is lifted, the lower prevision collapses into a precise probability
P (R) = 1/6 = P (R), and the evidence now requires all the comparative judgements
we would expect. So although lower previsions are themselves not perfect models of
evidence, they are more expressive than precise probabilities.23 This is enough to improve
Ms. Truthlove’s response. We can rewrite the necessary condition for satisfying (EN)
as:

• Necessary condition for satisfying the Evidential Norm (NEN∗): Let b :
F → 0, 1 a full belief. Then b satisfies (EN) only if there is a coherent lower
prevision P : F ∪X ∗ → R such that b is represented by P (for some values R,W ).
Equivalently, b satisfies (EN) only if b is coherent, and there is a coherent P such
that:

– If P (A) > W
R+W

, then b(A) = 1,

– If P (A) < W
R+W

, then b(A) = 0.

Note that in cases of complete ignorance about A, where the evidence is captured by
the vacuous prevision P (A) = 0, P (A) = 1, we have P (A) < W

R+W
< P (A) for any

admissible R,W , and so every coherent b satisfies the above norm. In other words, our
necessary condition puts no constraints on belief when the agent has no evidence, just
as we wanted.

The domain of P in our evidential norm is not just F , but F∪X ∗. I have argued that
enlarging the domain is not a problem for Dr. Truthlove and Dr. Locke. But what about
Ms. Truthlove? We know how to model evidence about F by imprecise credences, but
where do the values of P on X ∗ come from? Here I think that, unless the agent somehow
has direct evidence about the elements of X ∗, we should define P on F first, and then
take its natural extension. This is because Ms. Truthlove is interested in the constraints
imposed by the evidence on her beliefs. Taking the natural extension corresponds to
extending the constraints on F in accord to coherence, but without making them any
stronger than they need to be. Indeed, the class of beliefs represented by the natural

23Here is an example of the kind of evidence that cannot be captured by a lower prevision. Let
W = {w1, w2} where H = {w1} is the event that a tossed coin comes up heads, and T = {w2} that it
comes up tails. Say the agent learns the coin is biased towards tails, but does not know by what amount.
It should be P (T −H) < ε for all ε > 0. This is because, if P (T −H) = ε > 0, then P is modeling the
evidence that T is more likely than H of at least ε. But the agent knows of no such bound. So we must
put P (T −H) = 0. Yet this is also inadequate, as it fails to capture the evidence that T is more likely
than H.
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extension E is always larger than, or equal to, the class represented by any other coherent
extension E ′, and thus seems more appropriate for our necessary condition.

7 Conclusion
The representation of full beliefs by means of imprecise credences has some significant
advantages over its precise counterpart. The main formal improvement is the existence
of a converse result (Proposition 2) which guarantees that all strongly coherent full
beliefs are represented by some coherent lower prevision. To a defender of full belief (Dr.
Truthlove) interested in establishing and studying belief coherence, the converse result
is a great improvement, and so is the access to the methods of imprecise probability
theory. It is harder to establish whether a Lockean (Dr. Locke) aiming to reduce full
beliefs to his model of choice would be interested any imprecise representation, since this
perspective assumes a commitment to the representing model. Still, one may wish to
use the representation in a Lockean argument for imprecise credences, perhaps with the
hope of some day having access to an accuracy-based justification of imprecise coherence.
Finally, an evidentialist (Ms. Truthlove) should find the imprecise representation more
broadly applicable than its precise counterpart, because of the greater expressive power
of lower previsions as models of total evidence.
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A Appendix

A.1 A useful result

Let’s start by stating a theorem which gives us a nice way to show that a lower prevision
P is coherent from its corresponding set of dominating linear previsions:

Theorem 4 (Lower envelope theorem (Walley 1991)). The following three statements
about a lower prevision P : K(W)→ R are equivalent:

1. P is a coherent lower prevision.

2. P is the lower envelope of a class of linear previsions defined over K(W).

3. For every X ∈ K(W ) we have that P (X) = p(X) for some linear prevision p ∈
M(P ).

We can use this theorem to prove that the lower prevision defined by P (X) = inf X for
all X ∈ K(W) is coherent, since it is the lower envelope of the set of all linear previsions
on K(W). To see this, consider any X ∈ K(W). X is a function from W → R, and
since W is finite, inf X = X(w) for some w ∈ W . Then consider the linear prevision
p : K(W)→ R corresponding to the expectation function of the probability that assigns
p({w}) = 1. We have p(X) = inf X = P (X), and p clearly dominates P , so p ∈ M(P ).
Hence P is coherent. This is known as the vacuous prevision (Walley, 1991).

A.2 Other IP representations

We can now look at the representations defined by IP decision rules other than Maxi-
mality. Here is a list of some of the more popular IP decision rules:

• Γ-Maximin:
An agent with imprecise credence P defined on a linear space K(W) ⊇ (F ∪ XF),
when forced to accept a gamble among those in XF , must pick an option Xb ∈ XF
that maximises the lower expected utility P (Xb).

• E-admissibility:
An agent with imprecise credence P defined on a linear space K(W) ⊇ (F ∪ XF),
when forced to accept a gamble among those in XF , must pick an option Xb ∈ XF
that maximises expected utility under some p ∈M(P ).

• Maximality
Consider an agent with imprecise credence P defined on a linear space K(W) ⊇
(F ∪ X ∗), where:

X ∗ = XF ∪ {(Xb −Xb′) : Xb, Xb′ ∈ XF}.
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When forced to accept a gamble among those in XF , this agent must pick an option
Xb ∈ XF such that the following two conditions hold:

(i) There is no Xb′ ∈ XF such that X ′b(w) ≥ Xb(w) for all w ∈ W , and Xb′(w) >
Xb(w) for some w ∈ W .

(ii) P (Xb −Xb′) ≥ 0 for all Xb′ ∈ XF .

• Interval Domination
An agent with imprecise credence P defined on a linear space K(W) ⊇ (F ∪ XF),
when forced to accept a gamble among those in XF , must pick an option Xb ∈ XF
such that P (Xb) ≥ P (Xb′) for all Xb′ ∈ XF .

As mentioned in the main text, each of these will produce a different representation
when plugged into 5.1. To see why I chose to run with Maximality, let’s look at the
representations produced by each rule.

A.2.1 E-admissibility

Consider first the representation based on E-admissibility. In order for b to be represented
by an imprecise P , its corresponding gamble Xb has to be an optimum for P , Under E-
admissibility, this is the case iff there is a precise probability that dominates P (i.e.
an element of M(P )) for which Xb maximises expected utility. So we have that all b
represented by some imprecise P are also represented by some precise p. Furthermore,
the vacuous prevision is a coherent imprecise belief, and its setM(P ) is just the set of all
linear previsions on the same domain. Restricting these linear previsions to F , we obtain
the set of all probabilities on F . Therefore, each b that is represented by some precise
credence will also be represented by the vacuous prevision if we adopt the E-admissibility
definition. So if we use E-admissibility, the move to imprecise credences does not alter
the class of representable beliefs, and we don’t get an analogue of Proposition 2.

A.2.2 Γ-Maximin

Moving on to Γ-Maximin. When P is coherent, we have that (Walley, 1991 p.76):

P (X + Y ) ≤ P (X) + P (Y )

The condition for Xb being a Maximin optimum, that P (Xb) ≥ P (Xb′) for all Xb′ , allows
us to derive:

P (Xb′)− P (Xb) ≤ 0 for all Xb′ ∈ XF
⇐⇒ P (Xb′) + P (−Xb) ≤ 0 for all Xb′ ∈ XF
=⇒ P (Xb′ −Xb) ≤ 0 for all Xb′ ∈ XF
⇐⇒ P (Xb −Xb′) ≥ 0 for all Xb′ ∈ XF
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so being a Γ-Maximin optimum implies respecting the second condition of Maximality.
However, Γ-Maximin optima may violate the first condition of Maximality (Troffaes

2007). We can show this by a simple example. Say an agent with vacuous lower prevision
P is forced to choose between two gambles X, Y where X(w1) = 0 = Y (w1), X(w2) = 1
and Y (w2) = 2. Γ-maximin allows her to choose X, even though this option is weakly
dominated. So in general, Γ-Maximin-optima are not safe from weak dominance.

I say that this happens in general, because it’s not clear that it does happen when
we are considering the specific set of gambles XF . At present I can neither show that
Γ-maximin fails in this way, nor that it doesn’t. Furthermore, one might argue that
(WADA) is too strict of a requirement anyway, and that we should be content with
avoiding strong domination, which Γ-maximin optima clearly do. I have chosen to leave
these questions aside for this essay, focusing on the safer representation given by Maxi-
mality, but it’s worth pointing out that Γ-maximin may provide an alternative, equally
interesting representation.

A.2.3 Interval Domination

Finally, let’s look at the representation based on Interval Domination. In order to be
optimum for P , Xb must be such that P (Xb) ≥ P (Xb′) for all Xb′ ∈ XF . But this
condition is weaker than the second condition of maximality, because for a coherent P
we have that P (X + Y ) ≤ P (X) + P (Y ) (Walley 1991, p.76), and so:

P (Xb −Xb′) ≥ 0 for all X ′b ∈ XF
=⇒ P (Xb) + P (−Xb′) ≥ 0 for all X ′b ∈ XF
⇐⇒ P (Xb)− P (Xb′) ≥ 0 for all X ′b ∈ XF
⇐⇒ P (Xb) ≥ P (Xb′) for all X ′b ∈ XF .

So each Xb that is optimum for P under Maximality will also be optimum for P under
Interval Domination. This means that an analogue of Proposition 2 will also hold for
Interval Domination. However, some Xb are optimal under Interval Domination but not
under Maximality, and so by Proposition 2 they are not strongly coherent. Consider as
an example the case of two possible worlds {w1, w2}, setting R = 2 and W = 3. Let P
be the vacuous prevision, and consider the belief b such that b({w1}) = 1 and b(A) = 0
for all other events A ∈ F . At best (when w1 obtains) this belief has accuracy 2, and
at worse (when w2 obtains) it has accuracy −3. So the upper and lower prevision of Xb

are 2 and −3, respectively. The belief whose accuracy has highest lower prevision is b′,
where b′({w1, w2}) = 1 and b′(A) = 0 for all other events A ∈ F , and this lower prevision
is 2. Since P (Xb) = 2 ≥ P (Xb′), Xb is optimum under Interval Domination, and so it is
represented by P . Yet clearly b is incoherent, as it is accuracy-dominated by b′. Thus
there is no analogue of Proposition 1 for Interval Domination.

23



D
raft

A.3 Proof of Propositions 1 and 2

Starting with Proposition 1. The first condition of Maximality says that, for Xb to
be optimum in XF , there must be no Xb′ such that Xb′(w) ≥ Xb(w) for all w ∈ W ,
and Xb′(w) > Xb(w) for some w ∈ W . By definition of Xb, this is equivalent to the
requirement that there be no full belief b′ such that S(b′, w) ≥ S(b, w) for all w ∈ W ,
with strict inequality for some w. But this is just the requirement of Weak Accuracy-
Dominance Avoidance (WADA).

Now Proposition 2. Let b be a strongly coherent belief, and let P be the vacuous
prevision. Since b is strongly coherent, for each each Xb′ ∈ XF , we have that either
(Xb −Xb′)(w) = 0 for all w ∈ W , or (Xb −Xb′)(w) > 0 on some w ∈ W . So for all Xb′ ,
sup(Xb − Xb′) = P (Xb − Xb′) ≥ 0. Thus Xb respects both conditions (i-ii) for being a
Maximality optimum, and so b is represented by P .

A.4 Proof of Proposition 3

Assume P : F ∪X ∗ → R is coherent, and that b : F → {0, 1} is represented by P . Then
Maximality requires that b is coherent, and that P (Xb −Xb′) ≥ 0 for all b′.

To prove the first point, assume that P (A) > W
R+W

. Then by Theorem 4 we have
that p(A) > W

R+W
for all p ∈M(P ). Now assume by way of contradiction that b(A) = 0.

Define the full belief b∗ as equal to b on all events except A, where b∗(A) = 1. Then:

p(A) >
W

R +W
for all p ∈M(P )

⇐⇒ p(A)R− (1− p(A))W > 0 for all p ∈M(P )

⇐⇒
n∑

i=1

p(wi)s(1, wi(A)) >
n∑

i=1

p(wi)s(0, wi(A)) for all p ∈M(P )

⇐⇒
n∑

i=1

∑
E∈F

p(wi)S(b∗(E), wi(E)) >
n∑

i=1

∑
E∈F

p(wi)S(b(E), wi(E)) for all p ∈M(P )

⇐⇒ p(Xb∗) > p(Xb) for all p ∈M(P )

⇐⇒ p(Xb∗ −Xb) > 0 for all p ∈M(P )

By Theorem 4 again, since P is coherent, we will have that for some p ∈M(P ):

P (Xb∗ −Xb) = p(Xb∗ −Xb) > 0 (19)

and thus P (Xb − Xb∗) < 0, which contradicts our assumption that P represents b. So
it must be b(A) = 1. The second point can be proven in the same way, while the third
point trivially holds because it is a conditional statement whose consequent is true by
definition of full belief.
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